

Sixth Annual – 2009 Climate Change Symposium

The Future Is Now: Climate Change Mitigation, Impacts, and Adaptation Research

New Statistical Downscaling Techniques for California and the West

Ed Maurer

Civil Engineering Dept.

Santa Clara University

Projecting Future Climate - GCMs

- Climate Models (GCMs) Necessary
- These have biases
 - Spatial resolution
 - Parameterization
 - etc.
- At inappropriate scale for most impact analysis

Need for Downscaling

Dynamic

- Better representation of terrain captures local processes and feedbacks
- Computationally expensive
- Still contain biases

Statistical

Assumes stationary transfer function

Image: Canadian Climate Change Scenarios Network

BCSD Method - "BC"

- At each grid cell for "training" period, develop monthly CDFs of P, T for
 - GCM
 - Observations (aggregated to GCM scale)
 - Obs are from Maurer et al. [2002]

Use quantile mapping to ensure monthly statistics (at GCM scale) match

Apply same quantile mapping to "projected" period

Wood et al., BAMS 2006

BCSD Method - "SD"

- Use bias-corrected monthly GCM output 1
- Aggregate obs to GCM scale 2
- Calculate P,T factors relative to coarse-scale climatology $= \frac{1}{2} (P) = \frac{1}{2} (T)$

Interpolate factors to 1/8° grid 4

Apply to fine-scale climatology

$$6 = 4 * 5 (P) 6 = 4 + 5 (T)$$

Daily

BCSD is Computationally Parsimonious

- PCMDI CMIP3 archive of global projections
- New archive of 112 downscaled GCM runs
- gdo4.ucllnl.org/downscaled_cmip3_projections
- Allows quick analysis of multi-model ensembles

Variables & Projections Temporal & Spatial Extent Options & Info Tool

Emissions Scenarios, Climate Models and Runs									
De-select all runs	None	None	None						
Select all runs	All	All	All						
	A1b	A2	B1						
bccr_bcm2_0									
cccma_cgcm3_1									
cnm_cm3									
csiro_mk3_0		0000000							
gfdl_cm2_0		0000000							
gfdl_cm2_1		000000							
giss_model_e_r		0000000							
inmcm3_0									
ipsl_cm4	000000	0 000000							
miroc3_2_medres									
miub_echo_g		0000000							

Precipitation Rate (mm/day)

Global BCSD

- Similar to US archive
- Allows probabilistic representation of projections
- Captures variability among GCMs
- http://www.engr.scu.edu/ ~emaurer/global_data/
- http://climatewizard.org/

Source: Girvetz et al, PloS, accepted

Need for enhanced downscaling

- Some impacts due to changes at short time scales
- Heat waves
- Flood events
- BCSD limited

Constructed Analogues

Library of previously observed anomaly patterns:

Coarse resolution analogue:

Given daily GCM anomaly

Analogue is linear combination of best 30 observed

Apply analogue to fine-resolution climatology

Can CA improve daily downscaled projections?

- Downscaled NCEP-NCAR Reanalysis for 1950-1999
- Use 1950-1976 as "observed"
- 1977-1999 as "projected"
- Monthly skill in reproducing Reanalysis P and T is high for both methods

Daily Temperature Extremes

 CA able to recover Reanalysis skill

Winter Cool Extremes (10 %tile daily T)

Summer Warm Extremes (90 %tile daily T)

Daily Skill: Dry Extremes

- 20th percentile winter P
- r² values shown
- 90% confidence line
- Low skill for both methods
 - Daily large-scale data cannot counter lack of skill, poor relationship between scales
- No statistical difference for CA, BCSD
- Similar results for wet extremes
- Difficulty downscaling dry extremes

Dry Extremes (20 %tile daily P)

Peak Flow Differences 50° ■Most sites comparable for both methods and Obs. 45 ■Tuolumne R and Colorado R worse with CA than **BCSD** ■Room for improvement? 35 1000 10000 3 day peak flow, m3/s -125 -120° -115 -110 BCSD OBS 1000 10

Differences between BCSD and CA

- CA uses daily GCM data; BCSD uses monthly w/random resampling to produce daily values
- BCSD explicitly corrects for systematic GCM biases based on historic GCM performance
- CA corrects mean bias (using anomalies) but not:
 - spatial GCM biases
 - variability biases

Looking in detail at one GCM cell

- At high and low extremes, reanalysis exhibits bias
- Accounting for bias in mean alone is insufficient
- Improvement: Bias correct daily GCM data prior to CA: BCCA
- Since BCCA is bias corrected, no need to anomalize

Schematic of Procedures BCCA BCSD CA 2º GCM 2º GCM 2º GCM data (daily) data (daily) (monthly) 2º Constructed **Bias Correction Bias Correction** Analog of Spatial 1/8° Analog of 2º Constructed Interpolation to Analog of values 1/8° (monthly) Rescale historic Add mean field to 1/8º Analog of 1/80 1/80 1/80 downscaled downscaled data (daily) data (daily) data (daily)

Effect of BCCA on Peak Streamflow

Improvement with BCCA at most sites

Effect of BCCA

- Compared to CA, BCCA improves:
 - simulation of annual flow volumes
 - Simulation of flood peaks
- Problems remain for low flows, timing of snowmelt

Highlighted indicates downscaled different from observed

Center Timing		3- Day Peak		7-Day Low Flow			Annual Flow Vol.				
BCSD	CA	BCCA	BCSD	CA	BCCA	BCSD	CA	BCCA	BCSD	CA	BCCA
SHAST	SHAST	SHAST	SHAST	SHAST	SHAST	SHAST	SHAST	SHAST	SHAST	SHAST	SHAST
SAC_B	SAC_B	SAC_B	SAC_B	SAC_B	SAC_B	SAC_B	SAC_B	SAC_B	SAC_B	SAC_B	SAC_B
OROVI	OROVI	OROVI	OROVI	OROVI	OROVI	OROVI	OROVI	OROVI	OROVI	OROVI	OROVI
NF_AM	NF_AM	NF_AM	NF_AM	NF_AM	NF_AM	NF_AM	NF_AM	NF_AM	NF_AM	NF_AM	NF_AM
FOL_I	FOL_I	FOL_I	FOL_I	FOL_I	FOL_I	FOL_I	FOL_I	FOL_I	FOL_I	FOL_I	FOL_I
CONSU	CONSU	CONSU	CONSU	CONSU	CONSU	CONSU	CONSU	CONSU	CONSU	CONSU	CONSU
PRD_C	PRD_C	PRD_C	PRD_C	PRD_C	PRD_C	PRD_C	PRD_C	PRD_C	PRD_C	PRD_C	PRD_C
DPR_I	DPR_I	DPR_I	DPR_I	DPR_I	DPR_I	DPR_I	DPR_I	DPR_I	DPR_I	DPR_I	DPR_I
LK_MC	LK_MC	LK_MC	LK_MC	LK_MC	LK_MC	LK_MC	LK_MC	LK_MC	LK_MC	LK_MC	LK_MC
MILLE	MILLE	MILLE	MILLE	MILLE	MILLE	MILLE	MILLE	MILLE	MILLE	MILLE	MILLE
KINGS	KINGS	KINGS	KINGS	KINGS	KINGS	KINGS	KINGS	KINGS	KINGS	KINGS	KINGS
LESFY	LESFY	LESFY	LESFY	LESFY	LESFY	LESFY	LESFY	LESFY	LESFY	LESFY	LESFY
DALLE	DALLE	DALLE	DALLE	DALLE	DALLE	DALLE	DALLE	DALLE	DALLE	DALLE	DALLE

Improvement on BCCA

- Downscaling evidently introduces additional bias
- Precipitation intensity has low bias
- Potential solution: second bias correction after downscaling
- As before, use
 1950-1976 for
 training, 1977-1999 as
 "projected"

BCCA-BC 2º GCM data (daily) **Bias Correction** (daily) 2º Constructed Analog of values 1/8° Analog of **Bias Correction** (daily) downscaled

data (daily

Conclusions

- Statistical downscaling has skill, especially at monthly level
- Some daily skill from large (GCM) scale can be translated to regional/local scale
- Bias-correction of large-scale signal improves skill
- Further refinement may be possible

